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On the ‘wave momentum’ myth 

By M. E. McINTYRE 
Department of Applied Mathematics and Theoretical Physics, 

University of Cambridge 

Controversies over ‘the momentum’ of waves have repeatedly wasted the time of 
physicists for over half a century. The persistence of the controversies is surprising, 
since regardless of whether classical or quantum dynamics is used the facts of the 
matter are simple and unequivocal, are well checked by laboratory experiment, are 
clearly explained in several published papers, and on the theoretical side can easily 
be verified by straightforward calculations. They are illustrated here by some simple, 
classical examples involving acoustic and gravity waves. 

‘ The question is,’ said Alice, ‘whether you can make words mean different 

‘The question is,’ said Humpty Dumpty, ‘which is to be master - that’s 

- Carroll (1871) 

things.’ 

all.’ 

1. Introduction 
The privilege of writing an article for this special issue of JFM gives one, to quote 

Bondi (1967), ‘a rare opportunity to allow the bees in one’s bonnet to buzz even more 
noisily than usual’. One of the oldest and noisiest, in my case, concerns the myth that 
waves possess momentum. Most readers of JF’M will know that waves in fluids do not 
generally have a uniquely defined mean momentum - surface gravity waves being an 
exception, in a certain sense, in this as in so many other ways. But in the literature 
on other types of waves one still comes across the catch-phrases that propagate the 
myth. Waves are said, for instance, to give up ‘their momentum ’ near a critical layer, 
exchange ‘their momentum ’ with the mean flow, and so on. Often what is actually 
referred to  (as evidenced by the equations written down) is the convergence of a wave- 
induced stress, or flux of momentum. 

Such seemingly harmless licence in the use of words is best viewed in the light of 
history. A foray into the literature of physics (good entry points being the papers by 
Post (1953), Gordon (1973), Dewar (1977) and Israel (1977)) reveals a long and sur- 
prising history of fallacy, misunderstanding and controversy over ‘the momentum ’ 
of various kinds of waves. To quote E. I. Blount, ‘The argument has not, it is true, 
been carried on a t  high volume, but the list of disputants is very distinguished’ 
(unpublished manuscript cited by Gordon, op. c i t . ) .  The list includes Rayleigh, 
Poynting, Ehrenfest, Brillouin, Abraham, Minkowski, and Pauli. The controversies 
continue today, and are the more surprising since the questions involved are simple 
ones of classical physics. The persistence of the controversies is partly due, I believe, 
to the persistence of verbal inaccuracies of just the sort cited above. The facts of the 
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matter can easily be put into perspective by taking a look a t  three simple examples 
involving ordinary acoustic and gravity waves. 

2. Acoustic waves in a tube 
It was symptomatic of the state of affairs in 1925 that L. Brillouin felt the same 

need to sound off about the fact that momentum density and momentum flux are 
independent entities. I n  his classic paper on radiation stress in acoustic and elastic 
waves, probably the first clear presentation of the idea of radiation stress (Brillouin 
1925), he wrote: 

It is not ultimately the density of momentum which matters, but rather theJEux of momen- 
tum. This latter may very well differ from zero even when the density of momentum is 
zero. [My translation, but his italics.] 

Brillouin was reacting to a mistake in Rayleigh’s pioneering writings on the subject. 
Rayleigh (1905) had endorsed a statement by Poynting about the wave-induced mean 
force on a reflector, to the effect that 

if the reflexion of a train of waves exercises a pressure upon the reflector, it can only be 
because the train of waves itself involves momentum. 

By implication the statement just quoted, if true, would apply also to a wave emitter 
or absorber. But, as Brillouin pointed out, the deduction that the waves involve 
momentum is entirely fallacious. Fluxes of momentum (i.e. stresses, apart from sign), 
can perfectly well exist in a material medium without there being any momentum 
present. This of course is one of the basic differences between waves in media and 
waves in vacuo. To be sure, the distinction between vacuum and medium was not 
entirely clear in 1905 (if we discount an unknown researcher by the name of A. 
Einstein). But Rayleigh’s mistake is still a surprising one, not only because Rayleigh 
seldom made mistakes, but also because one does not have to look far to find counter- 
examples. 

The simplest is one of those considered by Brillouin. One-dimensional, plane, pro- 
gressive acoustic waves in an inviscid fluid are imagined to be propagating down a 
tube, being emitted by a vibrating piston a t  one end and perfectly absorbed by a 
similarly vibrating piston a t  the other. In  the steady state, with each piston vibrating 
about a fixed mean position, it is obvious from mass conservation that the centre of 
mass of the fluid cannot have any systematic mean motion. Each fluid particle must 
likewise be oscillating about a fixed mean position. Therefore no mean momentum 
can be present. There is certainly, on the other hand, a wave-inducedflux of momen- 
tum along the tube, together with corresponding mean forces on the emitter and 
absorber. As is well known, these are given for small wave amplitude a by 

A a(l0gc) 
E+E- 

a(lOgp) + 0(a3) 
( 2 . l a )  

per unit cross-sectional area, where E  ̂ is the usuai acoustic energy density, a positive 
definite, O(a2) quantity. The derivative of the sound speed c with respect to density p 
is the adiabatic derivative. The expression ( 2 . 1 ~ )  gives the excess mean inward force 
on each piston, per unit area, required to maintain its mean position while vibrating. 
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I n  other words, if the fluid is initially a t  rest and the pistons are started vibrating in 
an appropriately smooth manner, (2.1 a )  is the increase in mean inward force per unit 
area on each piston required to keep the mean volume constant. It differs from the 
excess mean force per unit area on the side of the tube, which is given by 

( 2 . l b )  

The quantity t?(logc)/a(logp) is positive for most fluids. The expressions (2.1) show 
that the waves set up an anisotropic mean stress within the fluid, which tries to push 
the ends of the tube apart more strongly than the sides. Brillouin called this the 
radiation stress. 

It is worth noting that a t  least four independent derivations of (2.1) are available, 
whose results are in complete agreement. This is emphasized because (2.1) has been 
questioned a number of times in the acoustics literature. The usual mistake is to solve 
the one-dimensional, nonlinear initial-value problem for emission of sound into a semi- 
infinite tube, by Riemann’s or Airy’s methods (e.g. Fubini-Ghiron 1937), but neglect 
to notice that the mean volume of a given mass of fluid in the tube generally suffers a 
permanent, O(a2) change when the waves arrive. Choice of solution parameters such 
that the mean volume has its stipulated value after the waves have arrived does re- 
produce (2.1); the nonlinear solutions also verify, of course, that each fluid particle 
does oscillate about a fixed mean position. A second derivation of (2.1) may be con- 
structed by posing expansions in powers of a from the outset, with due care over 
boundary conditions. A third follows directly from Lagrangian-mean theories of wave, 
mean-flow interaction (Bretherton 1971, tj 6.5; Andrews & McIntyre 1978a, tj 8.4)). 
A fourth derivation appeals to the Boltzmann-Ehrenfest theorem of ‘adiabatic in- 
variance’, which states that  the energy of a harmonic oscillator, vibrating freely and 
subject to slowly varying constraints, is proportional to its frequency. TJse of the 
Boltzmann-Ehrenfest theorem permits the O(a2) mean forces felt by the constraints 
to be deduced from a knowledge of the oscillations to O(a)  only. Brillouin did this in 
the corresponding standing-wave problem in which the pistons do not vibrate (but 
can be imagined to be moved slowly in or out). As I show elsewhere (McIntyre 1981), 
a modicum of ingenuity allows the theorem to be applied directly to the progressive 
case as well. 

The derivation from the Boltzmann-Ehrenfest theorem extends immediately to 
longitudinal dispersive waves (e.g. Post 1953) for which the dispersion relation does 
not itself depend on direction of propagation. The result is the same as (2.1) except 
that  the anisotropic contribution & to the radiation stress, the first term in (2.1 a ) ,  is 
replaced by 

&C/C, ( 2 . 2 )  

where C is the group velocity. The expression ( 2 . 2 )  was obtained by Rayleigh (1902) 
using ab initio expansion in powers of a. This contribution to the wave-induced 
momentum flux is the same as i f  the medium were absent, and progressive waves 
possessed mean momentum &/c .  The words ‘as if’ are crucial, unless the medium 
really is absent. I n  the case of waves in a vacuum, light waves for instance, wave- 
induced mean stresses can, of course, be attributed to the propagation through space 
of a disturbance which possesses momentum. But waves in media are fundamentally 
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different from waves in a vacuum, as already suggested. The difference is truly a 
fundamental one: for instance the linear equations describing waves in a vacuum 
satisfy the principle of relativity, whereas in the presence of a material medium they 
do not, because the medium defines a special frame of reference.t 

3. The ‘towing’ experiment 
There is a celebrated thought-experiment in which waves are generated by towing 

a rigid, slender, body through an inviscid fluid initially at rest. The idea goes back a 
long way in the history of the subject (Lamb 1932, Q 249) and of course arises imme- 
diately in studies of wave generation by ships, submarines, and supersonic aircraft. 
As is well known, the wave-induced drag D on such a slender body is calculable correct 
to O(a2) from linear theory. This is connected with the fact that the wave-energy Q 
(the volume integral of 8)  is so calculable. The rate of increase of kis equal to the rate 
at  which the agency propelling the body against the wave drag does work. Thus 

dr?/dt = UD, 

where U is the speed of the body through the fluid, which together with D we shall 
take to be constant. If I is the wave drag multiplied by the time elapsed, we then have 

I = 2 p .  (3.1) 

It has sometimes been argued that because the O(a2) quantity I can be calculated 
from linear theory it ought to represent a momentum associated with the waves. 
The argument is fallacious, as before, except for waves in a vacuum. The most that 
is implied by (3.1) is that the total momentum M of the system has undergone a change 
equal to I as the result of wave generation by towing, assuming that M is well defined 
and that no forces other than D are exerted on the system. There is no general reason, 
for instance, why the added momentum should be distributed spatially in the same 
way as the waves themselves. 

Explicit calculations have shown that the spatial distributions are indeed very 
different in many cases. I shall now describe one such case, in which the momentum 
given to the system is well defined and equal to I, but is distributed so differently 
from the wave-energy generated by the towed body as to leave no room for doubt 
about the facts of the matter. 

Consider a two-dimensional version of the towing experiment in which all quantities 
are independent of y, and the body is towed horizontally along a waveguide consisting 
of stably stratified fluid lying between rigid, horizontal boundaries z = 0 ,  h, as sug- 
gested in figure 1 (a).  This is how internal gravity waves are often generated in labo- 
ratory tanks, except that here we are assuming an infinitely long tank and the fluid 

t If we were including relativistic effects per se, incidentally, in the sense of Einstein’s special 
theory, then the energy flux h?C‘ in our mechanical waves would imply that a minute but non- 
zero mean momentum density, equal to b C  divided by the square of the speed of light, must be 
present (Landau & Lifshitz 1959, chapter 15). Its physical origin lies in several effects, one of 
which is the relativistic increase in the mass of a material fluid element when its pressure and 
internal energy rises; in a progressive sound wave a fluid element is more massive while it is 
moving forward. The mean forward motion of the centre of mass of the whole system is accounted 
for by the energy and therefore mass depletion of the agency emitting the waves, and the 
corresponding mass increase due to the work done on the wave absorber at the other end of 
the tube. 
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FIGURE 1. (a)  Sketch of internal gravity waves being generated by a two-dimensional, towed 
body in a waveguide containing a stratified fluid. The central ‘dye streak’ marks the location 
of the gravity waves. (b) ,  (c) Schematic distributions of O(a2) velocity and relative pressure, 
well outside the region containing gravity waves. Details near the latter region are omitted, as 
are starting transients affecting the profiles near x = _+ ct. The graphs show the outer solutions 
only, which are the same at  all levels z if the slight variation of sound speed c and acoustic im- 
pedance with depth is ignored. 

is unbounded in the x direction. For suitable values of the speed U a lengthening train 
of internal gravity waves appears behind the body.? For an incompressible fluid, the 
velocity field satisfies 

divu = u,+w, = 0. 

We take w to be zero on the top and bottom boundaries, and so 

for any value of horizontal position x not coinciding with the body. This expresses 
the fact that the volume flux of an incompressible fluid cannot change along bhe 
waveguide. Let us for the moment make the Boussinesq approximation, which 
assumes not only incompressibility but also that variations in fluid inertia per unit 
volume can be neglected (so that density variations are considered significant only 
when multiplied by the acceleration due to gravity). Then (3.2) implies that the 
density of horizontal momentum per unit horizontal area is constant as x varies, to 
the extent that the approximation holds. This makes it evident at  once that the 
momentum of the fluid cannot be spatially distributed in the same way as the waves, 
with the possible exception of a small contribution whose magnitude depends on the 
accuracy of the Boussinesq approximation and therefore has no simple relationship 
to (3.1). 

Incompressibility fails at  distances of the order of the sound speed c multiplied by 
the time t elapsed since the thought-experiment commenced. Since our assumptions 
imply a very large sound speed c 9 U ,  most of the momentum must be located far 
away from the gravity waves. It is a simple exercise in matched asymptotic expansions 
to show that the momentum appears in the form of one-dimensional, O(a2) acoustic 
disturbances with velocity and pressure distributions like those depicted schematically 
in figs. 1 ( b )  (c). The pressure shown is the excess pressure relative to the undisturbed, 
hydrostaticlressure at each level z. We have ignored the effects of starting transients, 
for instance those due to the initial acceleration of the body and the associated inertial 
reaction of the fluid. 

\ 

t The detailed linear theory can be found in my (1972) paper and follows much the same 
pattern as well-known calculations for other kinds of dispersive waves. It ignores certain non- 
linear, essentially transient effects near the body observed in actual laboratory experiments in 
some paraiiieter ranges (Baines 1979), and assumes uniform stratification. 
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Within our approximations it is easy to check directly that the velocity distribution 
associated with these long acoustic pulses does contribute a momentum just equal 
to I .  The far ends of the pulses can propagate freely only if the pressure change A P  
and velocity change Au are in a constant ratio, equal in magnitude to the acoustic 
impedance p c  of the fluid and having the same sign as x on either side, i.e. 

A P  = ~ ~ c A u  ( ~ $ 0 ) .  (3.3) 

The fact that (3.2) holds across the inner region containing the gravity waves implies 
that the values of Au are the same a t  both ends; therefore the values of A P  are equal 
and opposite. To fix the magnitudes of A P  and Au, one more relation is needed. It 
comes from the fact, easily verified from (3.2) and the equation of motion, that 
the pressure drop across the inner region must equal h-1 times the steady force D 
per unit width applied to that region, i.e. 

21API = k 1 D .  (3.4) 

It is here that we neglect details associated with starting transients. Solving (3.3) 
and (3.4) for Au, we have 

- 

u = AU = D/2phc 

outside the region containing gravity waves but within the sound pulses. This O(u2) 
velocity tends to zero if we let c tend to infinity. But since the acoustic pulses extend 
over a distance 2ct, their contribution to  the total momentum per unit width of the 
system is 

which is independent of c ,  and equal to I .  
If the body is brought to a halt so that the train of O(a)  gravity waves becomes a 

freely propagating wave packet, the O(a2) acoustic pulses become completely detached 
from the region containing gravity waves. This follows from the same considerations 
as before, but with D = 0 in (3.4).  Thus the point being illustrated (that the waves 
and the momentum are unconnected with each other, except insofar as they are pro- 
duced simultaneously by one particular way of generating the waves) evidently holds 
quite independently of any particular definitions which might be used, for instance, 
to distinguish ‘waves ’ from ‘ mean state ’. 

So far it has been assumed that no horizontal forces other than D are exerted on 
the fluid. But if we were to imagine the experiment done in a tank of finite length L, 
less than ct for the values o f t  of interest, then the forces exerted on the fluid by the 
end walls would change the picture completely. If the tank is mounted rigidly to the 
same support (e.g. the laboratory floor) from which the force towing the obstacle is 
exerted, then no net momentum need appear at all. We may suppose if we wish that 
the towing is started smoothly over a time t $ L/c, in which case acoustic disturbances 
can be shown to be altogether negligible. Alternatively, strict incompressibility of the 
fluid could be assumed a t  the outset, as is often done as a convenient basis for model 
calculations of gravity waves. It is often done, indeed, for the case of a completely 
unbounded fluid. The inconsistency inherent in the idea of an unbounded yet in- 
compressible fluid gives no trouble except when we try to discuss the total momentum 
and the pressure reaction a t  infinity (the forces exerted by the walls, so to speak, of an 
infinitely large tank). These are given by divergent integrals, as is well known (e.g. 

(3.5) 2ct ph AU = tD, 
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Batchelor 1967). In  the case of an unbounded, stratified fluid the same difficulty 
arises with the ‘fluid impulse ’ as well (Andrews 1974). 

The fluid-impulse concept does, however, apply to the incompressible, inner region 
in figure l (a) ,  as was pointed out by Benjamin (1970). For an incompressible fluid 
the impulse is an integral property of the fluid motion, involving the vorticity, whose 
rate of change equals D regardless of pressure changes at  large x. In  my (1972, 1973) 
papers I used an explicit solution for the inner region, correct to O(a2), to evaluate the 
integral giving the impulse. It is equal to I of course, but the interesting aspect of 
the calculation is that the integrand turns out to have a distribution in x which differs 
both from that of the O(a2) momentum and from that of the O(a) gravity waves - 
as can be seen at  a glance from figure 2 (a )  of the (1973) paper. The same calculation 
shows, incidentally, that there will be a small contribution to the total mean momen- 
tum arising from the variation of inertial density of the fluid due to the stable stratifi- 
cation. This is the effect previously neglected through appeal to the Boussinesq 
approximation for the region containing gravity waves. The non-Boussinesq contri- 
bution is much smaller than those discussed so far, and its spatial distribution once 
again differs both from that of the O(a2) acoustic pulses in figure 1 ( b )  and from that 
of the O(a)gravity waves in figure l (a ) .  

If momentum is not a general property of waves, one might well ask what is meant 
by the term ‘wave momentum’ sometimes encountered in the literature on general 
wave theory, and why there is a significant class of problems in which the right answer 
can be obtained by pretending that the fluid is absent and that the waves possess 
momentum given by formulae like (3.1).  I shall answer this question in section 5. 
But part of the answer is already hinted at  clearly enough by the present thought- 
experiment, as well as by Brillouin’s remarks quoted earlier. The wave-drag D repre- 
sents a force exerted across a material surface, equivalent to a$ux of momentum. 
It is to fluxes of momentum, and not to momentum itself, that relations like (3.1) are 
directly relevant in general. 

4. The case of surface gravity waves 
Because of the connection just referred to, between wave drag and wave-induced 

momentum flux, there are a few special cases in which mean momentum equal to I 
not only appears in the fluid but does seem to accompany the waves. The simplest 
examples are those in which such a result is inevitable because the geometry assumed 
permits nothing else to happen. Consider for instance a version of the internal-gravity- 
wave problem of figure 1 (a) in which the towed obstacle is replaced by a sinusoidally 
corrugated, moving boundary extending to infinity in both the positive and negative 
x directions. If the boundary moves at a phase speed matching that of a free gravity 
mode then there is a resonant buildup of wave-energy, and an associated wave drag. 
If we assume that pressures remain finite at  x = & 00 so that no mean pressure gra- 
dients in the x direction arise, then an amount of momentum equal to I is given to 
the fluid as before, reckoned now per unit distance in x as well as in y .  The momentum 
is spatially coincident with the waves simply because there is no other possibility: the 
waves are generated everywhere simultaneously. 

Perhaps the most famous example of this sort is the case of strictly periodic surface 
gravity waves imagined to have been generated from rest, in an inviscid, incom- 



338 M .  E .  McIntyre 

pressible fluid of large depth H ,  by a travelling, periodic surface pressure distribution. 
The motion is irrotational if the fluid is unstratified, and this leads to a special result 
of some interest, namely that all the momentum appears near the surface in the form 
of the Stokes drift. The Stokes drift is defined generally as the difference between 
mean particle velocity and Eulerian-mean velocity. It is a wave property, calculable 
from linear wave solutions, and as is well known is not generally zero. The fact that 
it  accounts for all the mean momentum in this problem is attributable to the fact 
that in the absence of mean horizontal pressure gradients the Eulerian-mean velocity 
cannot change during wave generation, being irrotational and independent of x, and 
therefore of z. In  the periodic internal-gravity-wave problem, by contrast, the motion 
is rotational, the Eulerian-mean velocity does change during wave generation, and 
the Stokes drift does not account for the total momentum. 

Because the Stokes drift is a wave property, it  might be thought that spatial co- 
incidence of the mean momentum with the waves themselves would carry over to 
wavetrains of finite length, in the case of surface gravity waves. That is true, how- 
ever, only in the superficial sense that the part of the mean momentum associated 
with the Stokes drift does, by definition, stay with the waves. For finite wavetrains 
there are always further contributions to the momentum of the system. In a fluid of 
depth H ,  for instance, the two-dimensional problem of wave generation from a finite 
forcing region has much the same character as in figure 1. The problem has been dis- 
cussed by Benjamin (1970) for the case where the waves are generated by a towed 
body. In  place of the O(a2) acoustic pulses in figure 1 there are slower-propagating, 
O(a2) changes in the level of the free surface. After a sufficiently long time these are 
distributed qualitatively as in figure 1 ( c ) ,  the relevant propagation speed c now taking 

the value c = (gH)i ,  

the speed of long surface gravity waves. The associated horizontal velocities are dis- 
tributed qualitatively as in figure 1 ( b ) .  The mass flux of the Stokes drift recirculates 
in a return flow underneath the wavetrain, superposed on the other O(a2) motions. 

If we let H tend to infinity in this problem, the depth-integrated momentum appears 
at distances 1x1 further and further away from the wavetrain, just as it did in the 
problem of figure 1 when we let the sound speed tend to infinity. The details change 
somewhat as soon as H exceeds ct, i.e. 

H 2 gt2, 

but the conclusion is unaffected, essentially because propagation speeds for net 
changes in surface level still increase without bound as H increases. (Indeed it turns 
out that the depth-integrated momentum spreads further than such considerations 
might suggest, occupying a horizontal distance of order H 9 ct as H + 00 for given t . )  
As in the example of figure 1, the magnitudes of the net changes in surface level and 
associated fluid velocities tend to zero in the limit, but the total momentum associated 
with them does not. 

If wave generation ceases then the propagating surface-level changes move off to 
either side, as in the internal-gravity-wave example, and we are left with the state of 
affairs suggested by figure 2. The Stokes drift has momentum equal to I ,  and the 
deep, irrotational return flow has momentum equal to - I .  If the wavetrain can be 
considered to be slowly-varying, and if H is large compared to the wavelength, 
then there is no further contribution to the local O(a2) mean motion (Longuet- 
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I 
FIGURE 2. The irrotational, O(a*) return flow underneath a packet of surface gravity waves 
propagating to the right. (The streamlines, plotted at  equal intervals, are quantitatively correct 
for a two-dimensional wave packet whose amplitude is constant except near its ends.) 

Higgins & Stewart 1962, equation (3.26), and (3.18) with BLH 1). The reason is 
that  the surface appears rigid to  the local mean flow under the assumed conditions, 
since the group velocity is much slower than propagation speeds for surface-level 
changes on t’he scale of the whole wave-train. In that case the third contribution 
I- I ,  needed to  bring the total momentum back up to its known value I ,  resides 
entirely in the propagating contributions, which as time goes on are found a t  increas- 
ingly remote distances 1x1 to the left and right of the picture. It is the first of the three 
contributions, of course, which is usually referred to as ‘the wave momentum’ in the 
literature on surface gravity waves. It is interesting that the second contribution, 
associated with the return flow in figure 2 ,  has been shown to play a significant role 
in the dynamics of modulstional instabilities of surface gravity waves (Dysthe 1979). 
It should perhaps be added also that in real oceanographic applications the existence 
of stable stratification can greatly modify the form of the return flow, coupling it 
directly to internal gravity waves. 

Not all examples of isolated wave packets have zero momentum like this one. If H 
is not much greater than the length of the wavetrain, then an isolated packet of surface 
gravity waves has finite momentum, not equal to I (Longuet-Higgins & Stewart op. 
cit.). An isolated packet of sound waves does have momentum equal to I (Landau & 
Lifshitz 1959), but the momentum is not distributed spatially in the same way as the 
O(a) waves; indeed its distribution varies secularly in time, as one might have 
anticipated from the theory of finite-amplitude sound waves. An isolated packet 
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of light waves in a refractive medium has a well-defined momentum in some simple 
cases. The momentum depends on the shape of the wave packet and the sound speed, 
and is not equal to I in general (Gordon 1973; Robinson 1975; Peierls 1976; Dewar 
1977). Other cases are known in which the packet continuously radiates an O(a2) 
disturbance, and does not have a well-defined momentum at all (e.g. Bretherton 1969, 
$3 .3 ;  Peierls 1976, § 7) .  

5. The pseudomomentum rule 
It will have been noticed that I have been using the terms ‘energy’ and ‘momentum’ 

in the ordinary, elementary sense of Newtonian mechanics. It is important to remember 
that some of the more abstract ways in which such terms are used actually contradict 
their elementary physical meanings. This has come about because in mathematical 
thinking it is customary and natural to use terms, whose original motivation was phys- 
ical, to refer to mathematical generalizations of the original concepts, with no attention 
paid to  physical meaning. Confusion can arise when such a mathematical concept is 
mistaken for the physical one which originally suggested it. This mistake - which 
appears to be one of those underlying the controversies about wave ‘momentum’ - is 
like the more obvious one of saying that an irrotational fluid motion is the same thing 
as an electrostatic field. Insofar as they both satisfy Laplace’s equation they are cer- 
tainly the same thing mathematically, but no one would be likely to argue that they 
are the same thing physically. 

The basic properties which make quantities like energy and momentum useful are 
their conservation properties; and the basic general remark about conservation rela- 
tions is their well-known correspondence with symmetry operations. Conservation of 
total energy, for instance, is related to a certain type of symmetry with respect to  
time. More precisely, energy conservation requires that the laws governing the motion 
of a given dynamical system be independent of time, including any external constraints 
on the system. A different symmetry condition, which may be of interest when waves 
propagate in a material medium, is that the medium be time-independent. The corres- 
ponding conservation relation may be called conservation of pseudoenergy , following 
precedents in plasma physics (e.g. Sturrock 19623). The medium can be stationary or 
moving, in the chosen frame of reference, but if pseudoenergy is to be conserved then 
any mean flow which is present must be steady. From a physical point of view time- 
independence of the medium is not, of course, the same thing as time-independence 
of the laws of motion and external constraints. The latter condition concerns the 
whole system, waves and mean flow included. The former concerns the problem for 
the waves alone, which in its simplest form is just the linearized problem. Consequently 
pseudoenergy is ( a )  a wave property, evaluable from a linear wave solution, and (3) is 
not physically the same thing as energy. It may of course be of interest to enquire 
whether the two entities are related in any way. It can be shown (McIntyre 1981) 
that  there is no general relation between their densities, but that there is, on the 
other hand, a fairly close general relation (although not equality) between their fluxes. 

Similar considerations apply to conservation relations associated with spatial sym- 
metries. Translational invariance of the whole dynamical system, for instance, gives 
conservation of momentum. Translational invariance of the medium gives conserva- 
tion of a wave property which may be called pseudomomentum. Here I am following 
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established terminology in both plasma and solid-state physics (e.g. Sturrock 1962 b ;  
Gordon 1973; Peierls 1976, 1979), where the importance of keeping the distinction 
between momentum and pseudomomentum in mind has long been recognized. In  the 
case of a slowly modulated, small-amplitude wavetrain whose wave-energy density 
& is well defined, in the sense discussed by Bretherton & Garrett (1968), the density 
of pseudomomentum can be shown to be approximately equal to 

2k/9, 

where 4 is the wavenumber and D the intrinsic frequency of the waves, i.e. their 
frequency relative to the local medium. To the same approximation, the density of 
pseudoenergy is equal to  &u/9, where w is the frequency in the observer’s frame 
(thus for a medium at rest the density of pseudoenergy coincides with 2). Exact 
definitions are given by Andrews & McIntyre (1978b). It can again be asked whether 
momentum and pseudomomentum are related in any way. Once more it turns out that, 
although there is no general relationship between their densities, there is a fairly 
close relationship (although again not equality) between their fluxes (Gordon 1973, 
Andrews & McIntyre 1978b, 9 5.2). This is the reason why formulae like (2.2) arise. 

It is similarly the reason, or part of the reason, why resultant mean forces due to 
waves, for example the wave-drag force on the towed obstacle in figure 1 (a) ,  are often 
the same as if 

(a) the waves had momentum equal to their pseudomomentum, and 
( b )  the medium were absent. 

Let us call this ‘the pseudoxomentum rule’. The rule turns out to hold in so many 
cases studied in the laboratory that it has sometimes been mistaken for physical 
reality (Gordon, op. c i t . ) .  That is, the important words ‘as if’ have sometimes been 
forgotten, together with the distinction between momentum and pseudomomentum. 

Whether or not the pseudomomentum rule holds in a given case depends upon the 
effects of the part of the radiation stress, or wave-induced momentum flux, which is 
unrelated to the pseudomomentum flux. In  the acoustic example of $ 2 that part is 
the isotropic, pressure-like contribution appearing in (2. l ) ,  proportional to 

and of course the example of 5 2 is one in which the pseudomomentum rule does not 
hold, since the isotropic contribution does add to the mean forces on the tube walls. 
Such contributions arise from nonlinearity in the restoring forces to which the waves 
owe their existence, and are analogous to the excess mean force arising when a hard 
spring is alternately stretched and compressed about some mean position. In  many 
cases these contributions to the radiation stress do not cause anything very interesting 
to happea, since their effects may be nullified, if enough time is available for a balance 
to be reached, by stresses resulting from small, O(a2) displacements of the material 
of the medium. I n  the case of acoustic waves, for instance, an O(a2) mean dilatation, 
such as would occur in the example of $ 2  if the walls of the tube were allowed to 
expand outwards under the influence of the radiation stress, will lead to an adjustment 
in the mean pressure field which can compensate the isotropic component of the 
radiation stress. The stresses involved need not be isotropic and pressure-like if the 
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medium per se can support anisotropic stresses. An example is the Maxwell stress 
involved in the restoring forces for AlfvBn-acoustic waves (Dewar 1970, eq. 34). 

The foregoing remarks suggest, and detailed analysis confirms (Gordon 1973; 
McIntyre 1981) that in order for the pseudomomentum rule to hold it is generally 
necessary (albeit not generally sufficient as we shall see) 

(i) that changes in the ambient pressure, or in other stresses supportable by the 
medium per se in the absence of waves, should not be able to  affect the resultant 
mean force whose value is of interest, and 

(ii) that  mean conditions should vary in time sufficiently slowly, if a t  all, for O(a2) 
stresses in the medium to have time to reach equilibrium with the part of the radiation 
stress which is unrelated to the pseudomomentum flux. 

These requirements are fulfilled, for example, by the substantially steady mean 
forces which generate acoustic streaming of the ‘ quartz-wind’ type (e.g. Eckart 1948; 
Markham 1952; Westervelt 1953; Nyborg 1953; Lighthill 1978), and by the analogous 
horizontal mean forces set up by dissipating internal gravity waves, recently verified 
experimentally by the work of Plumb & McEwan (1978). They are fulfilled also in most 
experiments on wave-induced mean displacements of interfaces between fluids of differ- 
ing composition, such as those carried out by Hertz & Mende (1939) for sound waves, 
and by Ashkin & Dziedzic (1973) for light waves. They are fulfilled in most experiments 
in which a steady wavetrain is scattered from or absorbed by an immersed obstacle. 

Measurements of the mean forces on immersed obstacles have in fact provided the 
most accurate experimental verifications of the pseudomomenturn rule. In  the case 
of sound waves such measurements have been carried out on numerous occasions, since 
they are used routinely for absolute determinations of the acoustic intensities produced 
by ultrasonic transducers. Provided that precautions are taken to minimize the effects 
of acoustic streaming, accuracies of the order of a percent or so are achieved for trans- 
ducers producing a few milliwatts (e.g. Rooney 1973a, b ) .  The behaviour of the mean 
force as a function of frequency, as predicted by the pseudomomentum rule in con- 
junction with accurate linear calculations of the scattered sound field (see Westervelt 
1957), has been confirmed in great detail by Hasegawa & Yosioka (1975) and others. 
The corresponding experiment for light waves has been done very accurately by Jones 
& Leslie (1978), improving on earlier measurements by Jones & Richards in 1954. 
Jones & Leslie verify the pseudomomentum rule ‘to a precision of better than 0.1 % ’. 
Longuet-Higgins (1977) has measured the mean forces due to absorption of surface 
gravity waves by a Cockerel1 wave raft, and although the experiments were not done 
a t  such high precision as the preceding they are good enough to verify the pseudo- 
momentum rule quantitatively. (He also gave an elegant demonstration of a model 
boat which propelled itself by emitting surface gravity waves to the rear; this is 
another case in which the rule should hold, but no quantitative experimental check 
was made.) Other experiments on surface gravity waves either quoted or carried out 
by Longuet-Higgins (op. c i t . )  are consistent with the rule, provided that due account 
is taken of all the scattered waves in calculating the net flux, including harmonics 
generated by nonlinear processes near the obstacle, and provided also that ‘resultant 
mean force ’ is understood to include forces exerted on the fluid as well as the obstacle, 
in cases where wave dissipation near the obstacle gives rise to mean streaming. 

The correctness of the pseudomomentum rule in so many cases accessible to 
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laboratory experiment appears to have been a major reason for continuation of the 
disputes over wave ‘momentum ’, in particular the celebrated Abraham-Minkowski 
controversy over ‘the momentum ’ of light waves in a refractive medium. As has been 
pointed out by a number of authors, however, notably Penfield & Haus (1966)) Gordon 
(1973) and Peierls (1976), Abraham’s momentum is the electromagnetic contribution 
to the actual momentum, whereas Minkowski’s is the pseudomomentum (Gordon op. 
eit., Peierls 1976, 8 6). In  the presence of a materisl medium they are unequal; but there 
is nothing paradoxical about this once one recognizes that they are distinct 
physical entities. Similarly, there is nothing paradoxical about the fact that  the 
surface-gravity-wave packet in figure 2 has zero momentum, but pseudomomentum 
equal to  I .  This incidentally is another case which conforms to the pseudomomentum 
rule, not only for generation by towing, but also for reflexion or absorption by an 
immersed obstacle, as can easily be shown by a slight extension of the analysis of 
Longuet-Higgim (1977, $2). The change in momentum due to  the recoil on the 
obstacle is entirely accounted for by the generstion of O(u2) long-wave transients, 
as before. 

It is perhaps worth mentioning a few more examples where the pseudomomentum 
rule does not hold. (If the rule represented physical reality, there could be no such 
examples, of course.) Among those of the obvious ‘static’ type typified by the prob- 
lem of $ 2  one might mention the thermal expansion of liquids, in which the thermal 
vibrations themselves can be modelled as sound waves; it was this problem which 
originally motivated Brillouin’s extensive investigation into acoustic radiation stress. 
A related problem arises in connection with stellar atmospheres permeated by shock 
waves. The waves must cause departures from hydrostatic balance, a matter of some 
importance for the interpretation of observed spectral lines. Effects of the general 
type represented by the a(logc)/a(logp) contribution to (2.1) are clearly important in 
all such problems. 

An example of greater fluid-dynamical interest arises in studies of the solar wind. 
Some of the more successful models take account of the acceleration of the solar wind 
by A l f v h  waves (Hollweg 1978, Jacques 1978, and references). The mean flow is so fast 
that  the mean pressure and Maxwell stress have no time to  equilibrate. Inevitably 
all contributions to the radiation stress we significant, not just the contribution which 
equals the pseudomomentum flux. The same is true of sound waves on a trans-sonic 
mean flow, such as that in a rocket nozzle (Jacques 1977), or of surface gravity waves 
on a weir. 

The ‘parametric acoustic array’ (Westervelt 1963), in which the radiation stress 
due to a beam of high-frequency sound waves of fluctuating amplitude acts directly 
on the medium to generate a narrow beam of low-frequency sound waves, provides 
another example in which the mean dynamics (that of the low frequency sound) is 
too fast for equilibration. The isotropic, a(log c)/a(logp) contribution to the acoustic 
radiation stress (2.1) plays an important role, indeed in many cases a dominant one 
since for most liquids a(log c)/a(logp) is considerably greater thali unity. There would 
be gross disagreement with experiment if that contribution were omitted (e.g. Moffett 
et al. 1971). This is interesting in itself since a t  present, as far as I know, experiments 
on parametric arrays provide the only direct experimental check on the isotropic 
contribution to (2.1), a fact which does not seem to have been pointed out before.? 

t Note added in proof: Westervelt (1977) mentions the connexion. 
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A completely different type of exception to the pseudomomentum rule arises for 
waves in a stratified fluid. If an isolated packet of internal gravity waves such as 
those shown in figure 1 (a) is scattered by a two-dimensional barrier immersed in the 
fluid, then the mean horizontal force on the barrier is quite different (in sign as well 
as magnitude, in some cases) from that given by the pseudomomentum rule. I pointed 
this out in my (1973) paper. I n  that case there is plenty of time for equilibration, 
condition (ii) above, but it turns out that in order for the rule to hold for an obstacle 
immersed in a stratified fluid under gravity the obstacle must be three-dimensional, 
so that a closed curve can be drawn around the obstacle on each isentropic surface. 
Even then the rule holds only for the horizontal components of the mean force. The 
full details, to  be given in my book (1981), would take us too far astray here. 

6. Concluding remarks 
The reader will have noticed, or guessed from (5.1), that pseudomomentum and its 

temporal analogue, pseudoenergy, are closely related to the notion of wave-action. 
Essentially the same formalism underlies the conservation relations for all three 
quantities. As Andrews and I pointed out in our (19783) paper, that formalism is 
mathematically (not physically !) identical to the formalism associated with the 
energy-momentum tensor in classical field theory (Landau & Lifshitz 1975), as was 
shown in effect by the work of Sturrock (1962a, b) and Hayes (1970). The symmetry 
condition required for wave-action conservation is invariance of the medium to a 
phase shift in the wave field, a condition which holds tautologically if mean quantities 
are defined by averaging over phase. This type of averaging occurs naturally whenever 
the method of multiple scales is used as the basis for distinguishing waves from mean 
state (Whitham 1970, 1974). Phase invariance thus leads to a conservation relation 
(e.g. Sturrock 1962a; Whitham 1965; Bretherton & Garrett 1968; Hayes 1970) even 
when the medium is time-dependent and inhomogeneous in all spatial directions. The 
phase is of course a physically real, observable phase, quite unlike the unobservable 
phases involved in the mathematically analogous relations in quantum mechanics, 
which are the conservation relations expressing, where appropriate, conservation 
of the number of quanta. 

It was suggested earlier that the issues involved in the wave momentum myth are 
essentially ones of classical physics, a fact which should be plain enough from the 
discussion. However, a final remark about quantum mechanics may be in order. It is 
noticeable that the myth has a tendency to reappear in the fluid-dynamical literature 
whenever ideas or computational techniques are borrowed from quantum mechanics. 
Quantization carries suggestions of ' particle-like ' behaviour, leading perhaps to a 
tacit presumption that the quanta behave in every way like isolated particles in a 
vacuum. That this presumption cannot be correct when a material medium is present 
is obvious from what has already been said. It remains just as true as before that, 
when a material medium is present, there are two distinct kinds of translational 
symmetry. Symmetries correspond to conservable quantities in quantum mechanics 
just as much as in classical mechanics, and so the two symmetries in question still 
give rise to two physically distinct conservable quantities, momentum and pseudo- 
momentum. 

To prevent the same old disputes dragging on for a.nother half-century, only one 
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thing is needed: the widespread acceptance of a terminology which explicitly recog- 
nizes the fact that pseudomomentum and momentum are not the same thing. The 
term pseudomomentum is now well established in other branches of physics, and it 
seems to me that the only sensible course is to adopt it in our own. 

I thank M. J. Lighthill for drawing my attention to the intriguing literature on 
the Abraham-Minkowski controversy, and F. P. Bretherton, V. Heine, R. Peierls, 
0. M. Phillips and R. Pierrehumbert for helpful discussions on fundamentals. K. B. 
Dysthe made me aware of the extensive research on parametric acoustic arrays, and 
M. Davenport kindly checked my translation of the quotation from Brillouin (1925). 
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